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1 Problem Studied

Despite many advances in developing alternative approaches, the majority of
theoretical approaches to ecological questions still have been based on the asymp-
totic analysis of deterministic models with constant parameters. Notable excep-
tions include the use of stochastic approaches, but in these cases the primary
tools have been models with small noise that is uncorrelated through time. Yet,
in ecology, major questions depend on dynamics on intermediate time scales
where asymptotic behavior would not be an appropriate assumption. And,
changes in environmental conditions over time indicate that it is important to
include temporal changes in any models.

Progress supported by this proposal ranged from basic mathematical advan-
ces to applications of these advances to issues in ecology and management of
ecological systems. One of the most basic approaches for understanding tran-
sient dynamics is based on non-autonomous differential equations, which were
used to look at the transit time and residency time of particles in compartmen-
tal systems, with potential application to understanding the dynamics of carbon
pools. Studying transient dynamics of structured populations led to problems
of understanding spectral bounds of matrices which allowed an understanding
of interplay between time scale of response of populations and time varying
environments, which would also have broad applicability beyond population
biology. Ideas like this were extended to understanding the role of autocorre-
lation through time on linear dynamics over relatively short time scales, which
was then sued to understand invasive species dynamics. These more basic ideas
were also then applied to understanding spatial responses of individuals, and
to management of eutrophication in lakes. The overall ideas and importance of
time scales as a unifying principle to guide management of ecological systems
were then summarized as part of a Sackler colloquium held at the National Aca-
demy of Sciences. Progress in a number of areas has been achieved and here I
will briefly summarize the work in the papers (listed in the bibliography at the
end) and provide more details on other approaches.

2 Dynamics of simple food web modules

We (the postdoc on the project, Gabriel Gellner and I, together with anot-
her collaborator, Kevin McCann) made substantial progress in the analysis of
solving simple two and three species differential equation models of ecological
systems, as described in the proposal and in a paper focusing on the two species
case published in 2016. The underlying ideas are relatively simple, essentially
depending on the idea that previous failures to understand non-monotonic de-
pendence of stability on parameter changes come from not recognizing changes
in eigenvalues from real to complex as parameters are varied. Coupling this idea
with stochastic simulations of dynamics yields new insights into the impact of
variability on stability of ecological systems, and on appropriate definitions of
stability. We argue using the classical type II consumer-resource model as an
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example where the frequently used empirical metric, CV, hides two different,
but important aspects of stability: (i) stability due to mean population density
processes, and; (ii) stability due to population density variance processes. We
then employ a simple stochastic consumer-resource framework in order to elu-
cidate: (i) when we expect these two different processes to arise in ecological
systems, and importantly; (ii) highlight the fact that these two stability proces-
ses respond differentially, but predictably, to changes in fundamental parameters
that govern biomass flux and loss in any Consumer-Resource interaction (e.g.,
attack rates, carrying capacity, mortality). Further work is ongoing to look at
extending these ideas to more complex systems.

3 Equation free modeling and temporal scales

A graduate student partially supported by the grant, Noam Ross, and I have
been looking at analyses of systems based on the approach of equation free
modeling due to Kevrikedes, which essentially is a way of explicitly recognizing
the different time scales inherent in the problem. The approach has been applied
to a system modeling the dynamics of a fungal disease of trees with the goal
of understanding what the best control measures would be. The results can
be compared to an optimal control approach of a mean field model. The ideas
clearly would have broad applicability to other diseases, as well as to other
spatial control problems that would be essentially impossible to approach by
other means. This work has yet to be published.

4 Nonautonomous differential equations

Transient dynamics often reflect exogenous variability in the system under study.
In fact, in ecological systems, the importance of transient behavior, as oppo-
sed to asymptotic behavior, is often a reflection of the fact that the ecological
system is in a perpetual transient in response to external forcing. Under this
project, several approaches are being used to analyze this and are covered in
the last headings in this report. One approach is to use ideas from the theory
and analysis of non-autonomous differential equations, as recently summarized
by Klode and Rasmussen. For these systems even definitions of stability and
other ideas are changed. The challenge is to develop approaches that lead to
computationally tractable methods. With Rasmussen and others, we have been
applying these ideas to understanding the dynamics of linear compartmental
models, as would arise for example in models of carbon cycling, to understand
dynamics as external changes occur, e.g. global change. A summary of the
problem (and results) from a mathematical point of view follows.

A (linear) autonomous compartmental system with d pools is given by an
inhomogeneous linear differential equation

ẋ = Bx+ s , (1)
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where B ∈ Rd×d is an invertible matrix, 0 6= s ∈ [0,∞)d, and the entries
{bij}i,j∈{1,...,d} of the matrix B satisfy

• bii < 0 for all i ∈ {1, . . . , d},
• bij ≥ 0 for all i 6= j ∈ {1, . . . , d},
•
∑d
i=1 bij ≤ 0 for all j ∈ {1, . . . , d}.

The i-th row of the matrix B describes the mass in pool i: bij is the rate at
which mass moves from pool j to pool i, and bii is the rate at which mass leaves
the pool i which includes transfer to other pools and losses from the system.
The rate at which mass enters from outside the system to pool i is given by si.

A (linear) autonomous compartmental system with d pools is given by an
inhomogeneous linear differential equation

ẋ = Bx+ s , (2)

where B ∈ Rd×d is an invertible matrix, 0 6= s ∈ [0,∞)d, and the entries
{bij}i,j∈{1,...,d} of the matrix B satisfy

• bii < 0 for all i ∈ {1, . . . , d},
• bij ≥ 0 for all i 6= j ∈ {1, . . . , d},
•
∑d
i=1 bij ≤ 0 for all j ∈ {1, . . . , d}.

The i-th row of the matrix B describes the mass in pool i: bij is the rate at
which mass moves from pool j to pool i, and bii is the rate at which mass leaves
the pool i which includes transfer to other pools and losses from the system.
The rate at which mass enters from outside the system to pool i is given by si.

4.1 Nonautonomous compartmental system

Let I := (τ,∞) with τ ∈ {−∞} ∪ R be a time interval, B : I → Rd×d be
a bounded continuous function of invertible matrices and s : I → [0,∞)d be a
bounded continuous function. A (linear) nonautonomous compartmental system
with d pools is given by an inhomogeneous linear nonautonomous differential
equation

ẋ = B(t)x+ s(t) , (3)

where we assume that the entries {bij(t)}i,j∈{1,...,d} of the matrix B(t) sa-
tisfy

• bii(t) < 0 for all i ∈ {1, . . . , d} and t ∈ I,
• bij(t) ≥ 0 for all i 6= j ∈ {1, . . . , d} and t ∈ I,

•
∑d
i=1 bij(t) ≤ 0 for all j ∈ {1, . . . , d} and t ∈ I.

4.2 Mean age system

Consider the nonautonomous compartmental system (3) with a fixed solution
t 7→ (x1(t), . . . , xd(t)) of positive entries. Let pi(a, t) be the density function on
age a for the mass in pool i at time t (note that

∫∞
0
pi(a, t) da = xi(t)), and
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define the mean age of mass in pool i by

āi(t) =

∫∞
0
api(a, t) da∫∞

0
pi(a, t) da

for all i ∈ {1, . . . , d} .

Then the mean ages ā(t) = (ā1(t), . . . , ād(t)) solve the ordinary differential
equation

˙̄a = g(t, x, ā) , (4)

with

gi(t, x, ā) = 1 +

∑d
j=1(āj − āi)bij(t)xj(t)− āisi(t)

xi(t)
for all i ∈ {1, . . . , d} .

Combining the equations (3) and (4) yields(
ẋ
˙̄a

)
=

(
B(t)x+ s(t)
g(t, x, ā)

)
, (5)

4.3 Nonautonomous residence times

We define residence time as the mean age of mass leaving the system at a par-
ticular time t. Note that in our nonautonomous context, this quantity depends
on the actual time t. We also provide a formula that corresponds to the mean
age of mass currently available in the compartmental system.

4.3.1 Nonautonomous residence time and mean age

Consider the skew product system (5) consisting of the nonautonomous com-
partmental system (3) and the mean age system (4). The residence time of a
solution (x1(t), . . . , xd(t), ā1(t), . . . , ād(t)), t ∈ I, of this system is then defined
as

R(t) :=

∑d
i=1 āi(t)xi(t)

∑d
j=1 bji(t)∑d

i=1 xi(t)
∑d
j=1 bji(t)

for all t ∈ I ,

and then mean age of this solution is defined by

M(t) :=

∑d
i=1 āi(t)xi(t)∑d
i=1 xi(t)

for all t ∈ I .

The residence time R(t) is the mean age of a particle (e.g., carbon) leaving
the system at time t, where as the mean age M(t) is the mean age of a particle
in the system at time t.

By providing measures of mean age and residence time for the nonautono-
mous case (which agree with definitions for the autonomous case) we provide
the first step towards an analysis of temporally varying systems.
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5 Temporal autocorrelation

Another approach to thinking about the importance of transients is to recognize
the importance of serial autocorrelation in time of forcing terms over realistic
ecological time scales. In work with Kim Cuddington, we have analyzed simple
models with serial autocorrelation to look at the idea that systems may have
a higher likelihood of passing a threshold because of the correlation. These
ideas are applied to understanding potential damage from invasive species. En-
vironmental parameters such as temperature and rainfall have a positively au-
tocorrelated variance structure which makes it likely that runs of good or bad
conditions will occur. It has previously been demonstrated that such autocorre-
lated environmental variance can increase the probability of extinction in small
populations, in much the same way that increased variance without autocor-
relation can increase extinction risk. As a result, it has also been suggested
that positive autocorrelation will decrease the probability that a species will
establish in a novel location. We suggest that describing the probability of inva-
sion success as the probability of indefinite persistence may be an inappropriate
definition of risk.

Economic or ecological damage may be associated with a population that
initially reaches high densities before going extinct. In addition, such populati-
ons may spread to new locations before extinction. We use a modeling approach
to examine the effect of positively autocorrelated conditions on the probability
that small populations will reach large size before extinction. We find that
where variance is high and the geometric mean of the population growth rate
is low, autocorrelation increases the risk that a population will pass a an up-
per threshold density, even when extinction probability is unaffected. Therefore
species classified as having low probability invasion risk on the basis of popu-
lation growth rates measured in low variance environments may actually have
quite a substantial probability of establishing a large population for a period
of time. The mechanism behind the effect is the disproportionate influence of
short runs of good conditions initially following introduction.

6 Age structure and response to pulses

In earlier work I had used primarily numerical approaches to investigate a pro-
blem looking at the role of different time scales of variability on the dynamics of
stage structured models. This analysis was restricted to two stage classes and
depended on a numerical approach to one part of the problem. The question
reduces to the comparison of the spectral bound of a convex combination of
matrices with the convex combination of the spectral bounds of the individual
matrices. In a collaboration with Professor Pauline van den Driessche of the
University of Victoria, we have been able to find analytic approaches to extend
the results to arbitrary numbers of classes using methods based on the theory
of M-matrices, which is essentially a generalization of Peron-Frobenius theory.
These results provide insight into the time scales of response of the systems
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studied to external forcing on different scales.
In the continuous time density independent population dynamic model, let y1

denote the population numbers in the first stage class into which all individuals
are born with the numbers in subsequent stage classes denoted by yi with i
ranging from 2 to n. Then the population numbers are described by the vector

Y = (y1, . . . , yn)T . (6)

Assume that in the good environment, the per capita mortality rate of an indi-
vidual in stage i is given by µi, the rate of maturation from stage i to i + 1 is
given by γi, and the per capita fecundity (rate of production of new individuals)
of an individual in stage i is mi with µi,mi > 0 for i = 1, . . . , n, and γi > 0 for
i = 1, . . . , n − 1. In the bad environment, the parameters are the same except
that there is no reproduction, so all mi = 0.

The population dynamics can be described using two real matrices A and B
as follows. The n× n matrix A is defined as

A =



−µ1 − γ1 +m1 m2 · · · · · · mn−1 mn

γ1 −µ2 − γ2 0 · · · 0 0

0 γ2
. . .

...
...

... 0
. . .

. . . 0
...

...
...

. . . −µn−1 − γn−1 0
0 0 γn−1 −µn


.

Let B = A−M , where

M = (1, 0, . . . , 0)T (m1, . . . ,mn). (7)

The model assumes that the environment varies in time, with the dynamics
in the good environment given by,

dY/dt = AY

and in the bad environment by,

dY/dt = BY.

The ultimate population growth rate in the model depends on the rate of swit-
ching between good and bad environments and the fraction of time the envi-
ronment is good or bad. For a square matrix, s(X), called the spectral abscissa
of X (sometimes called the spectral bound of X), denotes the maximum real
part of an eigenvalue of X. Let θ be the fraction of time that the environment
is in the good state. Assuming that the environment varies arbitrarily rapidly,
the long-term population growth rate is given by θs(A) + (1− θ)s(B) since for
sufficiently rapid variation the growth is simply determined by the average en-
vironment. If the environment varies on a very slow time scale the long-term
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population growth rate is the average of the growth rates in each environment, so
is given by s(θA+(1−θ)B). This latter conclusion depends on the environment
remaining in the good or bad state long enough so that the spectral abscissa
provides a good description of the growth during that period. The interesting
biological question is to determine conditions under which the population grows
faster with slow or rapid environmental variation. These conditions depend on
the life history, and the stage dependent variation in birth and death rates.

Thus we are interested in comparing the following two quantities

SV s = s(θA+ (1− θ)B) and RV s = θs(A) + (1− θ)s(B) (8)

for θ ∈ [0, 1], i.e., comparing the spectral abscissa of a convex combination of A
and B with the convex combination of their individual spectral bounds. Since
A,B and θA+ (1− θ)B are essentially nonnegative (i.e., all off-diagonal entries
are nonnegative, sometimes called quasi-positive), the spectral abscissa of each
matrix is also an eigenvalue. Note that if θ = 0 or 1, then SV s = RV s, so from
now on it is convenient to take θ ∈ (0, 1], then α = 1/θ ≥ 1. The behavior for
several special cases are clearly suggested by the underlying biological model,
so results are given here for more complex cases..

6.1 Equal fecundity and death rates in each stage class

Here, assume mi = m and µi = µ for i = 1, . . . , n. Then A = −µI + M + G,
where

G =



−γ1 0 · · · · · · 0

γ1 −γ2 0 · · ·
...

0 γ2
. . .

. . .
...

...
. . .

. . . −γn−1
...

0 · · · 0 γn−1 0


. (9)

Thus

SV s = s(θA+ (1− θ)B)

= s(−µI +G+ θM)

= −µ+ s(G+ θM)

and

RV s = θs(A) + (1− θ)s(B)

= θs(−µI +M +G) + (1− θ)s(−µI +G)

= −µ+ θs(G+M) + (1− θ)s(G)

= −µ+ θs(G+M),

since s(G) = 0. Therefore, an equivalent problem is to compare

SV s = s(G+ θM) and RV s = θs(G+M) (10)
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for θ ∈ (0, 1).
If ρ(FX(α)V

−1
X(α)) does not increase for all α ≥ 1, then s(X(α)) ≤ s(Y ).

6.2 Equal death rates, monotonic fecundity rates

Let α = 1/θ. Then for µi = µ, the problem is equivalent to comparing

SV s = s(αG+M) and RV s = s(G+M) (11)

for α ≥ 1 with M as in (7) and G as in (9). Setting X(α) = αG+M gives SV s =
s(X(α)) and RV s = s(X(1)) = s(Y ). As in Theorem ??, let X(α) − s(Y )I =
FX(α) − VX(α) with FX(α) = M (independent of α) and VX(α) = s(Y )I − αG.
By noting that M is a nonnegative matrix of rank 1 and VX(α) is a nonsingular

M-matrix with G lower triangular, ρ(FX(α)V
−1
X(α)) can be explicitly calculated;

see, for example, [?, p. 707]

ρ(FX(α)V
−1
X(α)) =

n∑
i=1

(
i−1∏
k=1

αγk
d+ αγk

)
mi

d+ αγi
(12)

with d = s(Y ), γn = 0 and by convention,
∏q
i=p = 1 if p > q.

6.3 Equal fecundity rates, lowest death rate in the last
stage class

Now, assume mi = m and min{µi} = µn > 0 for i = 1, . . . , n. From the case
with n = 2, SV s ≤ RV s, but we were able to give a proof of this inequality for
general n.

6.4 Implications

From a biological perspective, our results provide interesting examples of how
the growth rate of a species depends on the relationship between the time scale
of environmental variability and the stage dependent pattern of fecundities and
death rates. Given that selection should favor those with higher growth rates,
our results predict some of the life history patterns that should be observed for
species experiencing different temporal scales of environmental variability. Note
as well that this clearly means that persistence may depend on the time scale of
variability as the population could grow in one instance and decline in another.

7 Dynamic range sizes for territorial animals

Home range sizes of territorial animals are often observed to vary periodically
in response to sea- sonal changes in foraging opportunities. Here we develop
the first mechanistic model focused on the temporal dynamics of home range
expansion and contraction in territorial animals. We demonstrate how sim-
ple movement principles can lead to a rich suite of range size dynamics, by
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balancing foraging activity with defensive requirement and incorporating opti-
mal behavior rules into mechanistic home range analysis. Our heuristic model
predicts three general temporal patterns that have been observed in empirical
studies across multiple taxa. First, a positive correlation between age and terri-
tory quality promotes shrinking home ranges over an individuals lifetime, with
maximal range size variability shortly before the adult stage. Second, poor sen-
sory information, low population density, and large resource heterogeneity may
all independently facilitate range size instability. Finally, aggregation behavior
towards forage-rich areas helps produce divergent home range responses bet-
ween individuals from difference age classes. This model has broad applications
for addressing important aspects of animal space, with potential applications
also in conservation and health.

8 Seasonality

A graduate student who will be supported on the grant during the next year,
Easton White, and I have been investigating simple models that incorporate
seasonality in a variety of ways, which essentially synthesizes and incorporates
many of the ideas just described.

9 Time scales overview

Much of the overall progress from the proposal was summarized in a paper pu-
blished in PNAS in 2016. Human management of ecological systems, including
issues like fisheries, invasive species and restoration as well as others often must
be undertaken with limited information. This means that developing general
principles and heuristic approaches is important. The importance of an explicit
consideration of time arises because of the inherent limitations in the response of
ecological systems. Even for linear systems, it is important to recognize the ne-
cessary delays in the response of the ecological system to management. General
results emerge for optimization approaches to management which emphasizes
how delays due to demography and life histories can change the optimal mana-
gement approach. Similar themes emerge in systems with density dependence
and tipping points, namely that when considering issues of restoration or ma-
nagement to change the state of an ecological system, that time scales need
explicit consideration and may change the optimal approach in important ways.

10 Bibliography

Cuddington, K, Hastings, A (2016) Autocorrelated environmental variation and
the establishment of invasive species. Oikos 125:1027-1034 doi: 10.1111/oik.02859

Gellner, G. McCann, K.S. and Hastings, A. (2016) The duality of stability:
towards a stochastic theory of species interactions. Theoretical Ecology (2016)
9: 477. doi:10.1007/s12080-016-0303-2

9



Hastings, A. (2016) Time scales and the management of ecological systems.
PNAS 113: 1456814573, doi: 10.1073/pnas.1604974113

Hastings, A., van den Driessche, P. (2016) Inequalities on the spectral abs-
cissa for matrices arising in a stage-structured population model. Linear Algebra
and its Applications 494:90-106

Li, Y., Liu, Y., Zhao, L., Hastings, A., Guo, H. (2015) Exploring change
of internal nutrients cycling in a shallow lake: A dynamic nutrient driven phy-
toplankton model Ecological Modeling 313:137-148

Rasmussen, M., Hastings, A., Smith, M.J., Agusto, F.B., Chen-Charpentier,
B.M., Hoffman, F.M., Jiang, J., Todd-Brown, K.E.O., Wang, Y., Wang, Y-
P. and Luo, Y. (2016) Transit times and mean ages for nonautonomous and
autonomous compartmental systems. J. Math. Biol. 73:1379-1398

Tao, Y., Brger, L. and Hastings, A. (2016) Dynamic range size analysis of
territorial animals: an optimality approach. American Naturalist 188:460-474

10


